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Analysis of the early stage of coalescence of helium drops

Humphrey J. Maris
Department of Physics, Brown University, Providence, Rhode Island 02912, USA

~Received 3 March 2003; published 27 June 2003!

We analyze the growth of the neck that forms between two liquid drops that have come into contact. The
analysis is for a fluid in which the velocity of each point on the surface is proportional to the local curvature
and directed normal to the interface. For this system, we show that the radius of the neck is proportional tot1/3,
where the timet is measured from the moment at which coalescence commences. We are able to find a simple
expression for the shape of the interface in the vicinity of the neck.

DOI: 10.1103/PhysRevE.67.066309 PACS number~s!: 68.03.2g, 67.40.Hf, 68.35.Gy
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I. INTRODUCTION

When two liquid drops come into contact, a neck form
between them and grows rapidly. At later times, the flu
may remain as one connected mass or may break up@1#. The
coalescence process is affected by the size of the drops,
relative velocity before impact, and their material properti
such as viscosity, density, and surface tension. In this pa
we are primarily interested in the very early stage of
coalescence process and, more specifically, in the varia
of the radiusRn of the neck with the timet since coalescenc
of the drops began. For simplicity, we restrict attention
situations in which the impact velocity is zero and both dro
have the same material properties and initial radiusR.

Even then, there are a number of different cases that
be considered. If the drops are composed of classical fl
obeying the Navier-Stokes equation, it is necessary to s
this equation in the interior of the drop and with appropria
boundary conditions on the pressure and velocity fields at
drop surface. When the viscosity is sufficiently large, t
fluid will move in a way such that at each instant the visco
forces very nearly balance the surface tension forces~Stokes’
flow!. In this regime, the density of the liquid does not affe
the motion and so from dimensional analysis the neck rad
Rn must vary as

Rn5R f~st/hR!, ~1!

wheres is the surface tension,h is the viscosity, andf is a
function whose form is to be determined. For a tw
dimensional system, i.e., two long, parallel, fluid cylinders
was shown by Hopper@2# that the functionf has the form

f ~x!5Axu ln~x!u, ~2!

where A is a constant. More recently, Eggers, Lister, a
Stone @3# have shown that this result should also hold
three dimensions. Experiments to test the predictions of E
~1! and~2! are under way@4#. Eggerset al. @3# point out that,
regardless of the value of the viscosity, there will be Stok
flow at very early times. At later times, if the liquid is not to
viscous, there will be a transition to a regime in which t
neck radius varies ast1/2. Menchaca-Rochaet al. @5# studied
the growth of the neck between two mercury drops a
found results that are consistent with at1/2 law.
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One can also consider the coalescence of two drop
superfluid helium. Depending on the temperature, superfl
helium is described by different hydrodynamic equatio
There are at least three regimes to consider@6,7#.

~1! At temperatures greater than 1 K, the motion of t
liquid is well described by Landau’s two-fluid model. The
fluids, the so-called normal and superfluid components, h
independent velocitiesvW n andvW s , respectively. They occupy
the same region of space and are able to pass through
other. The superfluid has no viscosity and has a velocity fi
vW s satisfying curlvW s50. The normal fluid has a viscosityhn .
The normal and superfluid components satisfy coup
boundary conditions at the surface of the liquid. In this te
perature range, a liquid drop is surrounded by a signific
amount of helium vapor.

~2! At lower temperatures, the two-fluid model brea
down @6,7#. The normal fluid component is composed of e
ementary excitations~phonons and rotons!. The excitations
that make up the normal fluid have a well-defined collect
velocity ~normal fluid velocity! only when the number den
sity of these excitations is sufficiently high that they ma
frequent collisions with each other. When the temperatur
lowered, the mean free path of the elementary excitati
~phonons and rotons! increases and can become larger th
the dimensions of the drop. Under these conditions, the
fect of the excitations is to exert a drag force on a mov
surface that is normal to the surface and proportional to
surface velocity.

~3! Finally, at sufficiently low temperatures the effect
the excitations must become completely negligible.

The model we consider is a special case of the regime
superfluid helium. We suppose that the liquid moves su
ciently slowly that there is always a balance between
surface tension force driving the motion and the drag fo
exerted by the excitations. Thus, this is analogous to
Stokes’s flow of a classical fluid. Under these conditions,
velocity of the interfacev I will be in the direction outward
normal to the interface and given by

v I5K̃~sk1P!, ~3!

where k is the total curvature, taken as positive when t
surface of the liquid is concave outward. We will call th
constantK̃ the mobility of the interface.P is the pressure
©2003 The American Physical Society09-1
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inside the drop, taken to be independent of position. We t
the liquid as incompressible so thatP varies with time in
such a way that the volume of the drop remains constan

We note that, as well as being relevant to liquid heliu
the model may be applicable to the motion of the interfa
between liquid and solid helium@8#. We discuss this in more
detail in Sec. IV. In the mathematical literature the flow d
scribed by Eq.~3! is called ‘‘mean curvature flow’’@9#.

II. RATE OF GROWTH OF THE NECK

In the early stages of coalescence, the curvature in
vicinity of the neck will be much larger than the curvature
the remainder of the liquid surface. In addition, even thou
the neck is growing rapidly the change in volume of t
liquid in the vicinity of the neck is very small compared
the total volume of the drops. Thus, the pressure rem
nearly constant at the value 2s/R. Thus, we can make th
approximation that the only part of the surface that is mov
is the part near the neck. It follows that, when the neck ha
radiusRn , the widthw of the neck will be~for definition, see
Fig. 1!

w5Rn
2/R. ~4!

The surface tension force pulling outward on a section of
circumference of the neck of lengthdC will be 2sdC. This
has to be balanced by the drag force acting on the neck.
drag force is proportional to the area of the neck,wdC, and
to the rate of growth of the neck, and inversely proportio
to K̃. Thus,

2sdC5a
wdC

K̃

dRn

dt
, ~5!

where a is a dimensionless coefficient dependent on
shape of the neck. Let us assume for the moment thata is
independent of the neck radius and hence also indepen
of the time since coalescence began. Then, combining
~4! and ~5!, we have

Rn
2 dRn

dt
5

2K̃sR

a
, ~6!

and so

FIG. 1. Parameters describing the shape of the waist.
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Rn5S 6K̃sRt

a
D 1/3

. ~7!

Now consider the assumption that the coefficienta re-
mains constant. This will hold true if the shape of the ne
remains constant as the radius of the neck grows. Thus
example, with reference to Fig. 1, does the ‘‘depth’’ of th
necku vary with time in the same way as doesw? To answer
this question, we note that, ifw were held constant, the tim
tn for the neck to come to an equilibrium shape would be
the order ofw divided by the surface velocity. Since th
surface velocity is of the order ofK̃s/w, we have

tn;w2/K̃s;
Rn

4

R2K̃s
. ~8!

This is to be compared to the time scaletw on which the
width of the neck changes, which is given by

tw5
w

dw/dt
5

Rn

2dRn /dt
5

Rn
3a

4RK̃s
. ~9!

It can be seen thattn is smaller thantw by a factor ofRn /R.
Thus in the early stages of coalescence it appears from
argument that the shape of the neck should be constant

We now determine the coefficienta. Based on the above
arguments, it should be sufficient to do this for a surfa
advancing down a channel of constant widthw with the liq-
uid having zero contact angle with the walls. Letx be the
distance along the channel andz across, with the middle of
the channel atz50 ~Fig. 2!. Suppose that the interface
moving along the channel with a constant velocityv. Let the
velocity of the interface in the direction normal to the surfa
bev I and let the angle that the tangent to the interface ma
to thex axis beu. Then

v I5v sinu5K̃sk. ~10!

We have sinu5(dz/dx)/@11(dz/dx)2#1/2 and the curvature of
the surface isk52(d2z/dx2)/@11(dz/dx)2#3/2. Hence,
from Eq. ~3! ~and settingP50 for the moment!

FIG. 2. Coordinate system used in the calculation of the sh
of a surface moving down a channel with parallel walls separa
by a distancew. The shape of the interface is as given by Eq.~14!.
9-2
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d2z

dx2

dx

dz

1

11~dz/dx!2
52

v

K̃s
. ~11!

The right-hand side of this equation is a constant, and
equation provides a differential equation that determines
shape of the moving surface. To solve Eq.~11!, set dz/dx
5 f , so the equation becomes

d f

dx
52

v

K̃s
f ~11 f 2!. ~12!

Then, by integration we get

f 56
1

@exp~2vx/K̃s!21#1/2
, ~13!

where we have chosen the constant of integration so
udz/dxu5` at x50. A second integration gives

z56
K̃s

v
tan21$@exp~2px/w!21#1/2%. ~14!

As x→`, z→w/2. Therefore the velocityv must equal
pK̃s/w and so the shape of the surface is

z56
w

p
tan21$@exp~2px/w!21#1/2%. ~15!

This is the interface shape shown in Fig. 2.
From a comparison of the above analysis with Eq.~5!, we

obtain

a5
2

p
, ~16!

and so the final result for the radius of the neck is

Rn5~3pK̃sRt!1/3. ~17!

The shape of the neck for the coalescing drops can the
written in cylindrical polar coordinates~r,z! by using Eq.~4!
for w, i.e., by settingw5Rn

2/R, to obtain

z56
Rn

2

pR
tan21

„$@exp@2p~r 2Rn!R/Rn
2#21%1/2

…. ~18!

This result is based on setting the pressure equal to ze
Eq. ~3!. As mentioned earlier, the pressure at any inst
must adjust to a value that ensures that the volume of
drop remains constant. A change in the pressure will resu
a motion of the entire surface of the drop, not just in t
region near to the neck. The pressure must be negativ
that the main part of the drop contracts to compensate for
increaseDV in the volume in the vicinity of the neck. From
Eq. ~4!, we have to lowest order inRn /R

DV5
pRn

4

2R
. ~19!
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Hence in order for the total volume to remain constant,
radius of each drop must shrink by an amount

DR52
Rn

4

16R3 . ~20!

This is smaller than the widthw of the waist by a factor of
the order ofRn

2/R2. Thus it appears that at early time th
effect of the pressure can be neglected.

Finally, we note that, since we are considering only wh
happens in the vicinity of the neck, we could as an alter
tive setw5r 2/R in Eq. ~15!, to obtain the formula

z56
r 2

pR
tan21

„$@exp@2p~r 2Rn!R/r 2#21#%1/2
…. ~21!

This formula has the feature that when the argument of
inverse tangent becomes large, i.e., whenr lies outside the
neck region, the relation betweenz and r becomes

z'6
r 2

2R
. ~22!

Thus the solution smoothly goes over to the equation for
undisturbed surface of the drops near to the point of cont

III. NUMERICAL SIMULATION

We have performed a computer simulation to comp
with the analytical calculation given above. To avoid havi
to deal with a singular initial shape, we started with a neck
radiusRn0 and took the starting position of the surface to
given by the equations

r 5H Rn01bz2 uzu,zc ,

~2uzuR2z2!1/2 uzu.zc .

~23!

~24!

By choosing

b5
1

2zc

R2zc

~2zcR2zc
2!1/2 ~25!

and

Rn05~2zcR2zc
2!1/22bzc

2, ~26!

it follows that Eqs.~23! and ~24! give a curve that is con-
tinuous atzc and which also has a continuous derivative
this point. The starting radius of the waist was 0.01R. In
performing the simulation it was assumed that the drops
tained axial symmetry as coalescence progressed and
r (2z)5r (z). Thus, in both the simulation and the analytic
calculation, it is implicitly assumed that there are no ins
bilities that break these symmetries. A set of 7800 points
the surface was used. The result for the radius of the nec
a function of time is shown in Fig. 3, along with the analy
cal result Eq.~16!. It can be seen that the agreement wh
the waist is small is excellent. In the range where the wais
above about 0.06R, the waist obtained from the numerica
simulation is smaller than that predicted by the analyti
result. This is to be expected since the analytical resul
9-3
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valid only when the waist radius is much less thanR. Equa-
tion ~17!, which predicts a waist radius increasing for a
times, must give too large a value ofRn for large t.

In Fig. 4 we show a comparison of the shape of the n
region obtained from the numerical simulation and from
analytical calculations@Eqs.~18! and ~21!#. The comparison
is made whenK̃sRt50.000 01 at which time the waist ra
dius isRn50.0454R. The agreement is excellent. Based
the analytic solution, the radius should increase ast1/3 and
the width of the neck should vary ast2/3. Thus the shape o
the neck expressed in terms of the reduced variablesr /t1/3

andz/t2/3 should be independent of time for small times.
plot of this type is shown in Fig. 5. It can be seen from th
figure that the shape of the neck in these reduced variabl
indeed almost independent of time. Note that for the larg
time for which K̃sRt50.0001, the radiusRn of the neck is
;0.1R and is increasing with time slightly less rapidly tha
as t1/3. Thus, when the shape of the neck is plotted in
reduced variables, the neck radius shrinks slightly as t

FIG. 3. Radius of the waistRn divided by initial radius of the

dropR as a function of timet multiplied byK̃sR. The dashed curve
shows the result from the computer simulation and the solid cu
is the analytical result@Eq. ~16!#.

FIG. 4. Shape of the region around the waist at a time such

K̃sRt50.000 01. The dashed curve shows the result from the c
puter simulation and the analytical results from Eqs.~18! and ~21!
are shown by the dotted and solid curves, respectively.
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increases. Finally, in Fig. 6 we show the shape of the drop
much later times.

IV. POSSIBLE APPLICATION TO THE LIQUID-SOLID
HELIUM INTERFACE

The interface between liquid and solid helium has a nu
ber of unique properties and has been studied in great de
Helium is the only substance that can remain liquid down
absolute zero temperature. For4He at zero temperature, it i
necessary to apply a pressure of 25 bars in order to form
solid. By introducing an appropriate amount of helium into
cell of fixed volume, it is possible to have liquid and sol
coexisting. Under normal gravitational conditions, the so
will occupy the bottom of the experimental cell because
its higher density. However, it should be possible to levit
drops of the solid phase optically or magnetically as has b
done for the liquid@10,11#, and to study the coalescence
these drops. Of course, in considering the coalescenc
solid drops, it is necessary to allow for the variation of t
surface energy over the surface of the drop.

As discussed by Castaing and Nozieres@12#, the growth
rate of solid from the liquid is determined by the differen
Dm in the chemical potential per unit mass of the two pha
and the temperature differenceDT. When these difference
are sufficiently small,

Dm

T
5aJ1bJE , ~27!

e

at

-

FIG. 5. The shape of the neck expressed in terms of the redu

variablesr /(K̃sRt)1/3 and z/(K̃sRt)2/3 for times such thatK̃sRt
50.000 01, 0.000 03, and 0.0001.

FIG. 6. The shape of the drops at times such thatK̃sRt has the
values 0.01, 0.1, and 1. The initial diameter of each drop is 2R.
9-4
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DT

T2 5bJ1cJE , ~28!

whereJ andJE are the currents of mass and entropy, resp
tively, flowing across the interface, anda, b, andc are On-
sager coefficients. Note that the same coefficientb appears in
both equations. We ignore the thermal effects for the mom
so that we can write the velocityv of the interface as

v5KDm. ~29!

In the literature on solid helium,K is referred to as the
growth coefficient@13#, and is related to the coefficientK̃
previously introduced by

K

rs
5K̃. ~30!

For a classical substance, the growth rate is determined
the rate at which atoms in the liquid can move to find corr
positions on the solid surface. Thus,K increases with in-
creasing temperature. For helium, on the other hand, one
consider that freezing amounts to the smooth conversio
one quantum state~the liquid! into another~the solid!, and so
at zero temperature there is no dissipation associated
this process. ForTÞ0, a finite growth coefficient arises be
cause as the interface moves thermal excitations com
from either the liquid or solid side are reflected and exe
drag force on the interface. In the solid these excitations
phonons, and in the liquid they are phonons and rot
@14,15#.

Now we consider the conditions under which the moti
of the interface will be sufficiently slow that at each mome
the surface tension forces nearly balance the drag force
the interface. It is convenient to do this by analyzing t
small amplitude motion of a planar interface. From the wo
of Andreev and Parshin@14#, the dispersion relation for thes
so-called ‘‘melting-freezing waves’’ is obtained from the s
lution of the equation

v21
ivkrsr l

K~rs2r l !
22

k3sr l

~rs2r l !
2 50, ~31!

wherev is the frequency,k is the wave number,s is now the
liquid-solid surface energy, andrs andr l are the densities o
the solid and liquid, respectively. Let

kc[
rs

2r l

4sK2~rs2r l !
2 . ~32!

Then fork.kc Eq. ~28! has a pair of solutions of the form
v56vR1 iv I , wherev I is negative. These solutions co
respond to damped propagating waves traveling along
interface. Fork,kc , the solutions forv are purely imagi-
nary, and fork!kc a disturbance of the interface with wav
numberk relaxes with a frequency

v52
ik2Ks

r l
52 ik2K̃s. ~33!
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Thus, in this range of wave numbers the interface moves
velocity which is proportional to the local curvature, and t
theory that we have developed should be applicable. He
from this analysis we conclude that during the coalesce
process the features of the interface that can be descr
with k,kc will be adequately described by our theor
whereas very sharp features withk.kc will not. For 4He at
1.35 K, for example,K21'103 cm s21 @16#, and we obtain
kc'33107 cm21. Thus, our theory should give a good d
scription apart from details on a length scale of a few a
stroms, which are unlikely to be observable in any case.
the temperature is lowered,K increases,kc decreases, and
eventuallykc

21 becomes comparable to the radius of the dr
and the theory is completely inapplicable.

We can now consider the neglect of thermal effects, i
the replacement of Eqs.~27! and~28! by Eq.~29!. This relies
on the assumption that either the solid or the liquid~or pref-
erably both! are good heat conductors so that the latent h
that is liberated when the solid is formed is efficiently carri
away. We have not investigated this in detail. However,
note that for3He at around 0.32 K, the latent heat becom
zero @6# thus making heat conduction unnecessary. At t
temperature@17# K21'500 cm s21 and sokc is again very
small, making the theory applicable. Of course, since3He is
not superfluid at this temperature, it may be necessary
consider the effects of the viscosity of the liquid on the co
lescence process.

The damping of the interface arises because elemen
excitations~phonons and rotons! bounce off the surface an
damp its motion. For this process, the drag force on
interface is proportional to the surface velocity only wh
the surface velocity is small compared to the propagat
velocity vex of the excitations. Since the radius of the ne
varies ast1/3, it follows that within the model the surfac
velocity varies ast22/3. Thus, the results we have derive
should be used only for times such that this velocity is mu
less than the excitation velocity, which means for times su
that

t@
~3pK̃sR!1/2

~3vex!
3/2 , ~34!

or

Rn

R
@S pKs

vexrsR
D 1/2

. ~35!

For K215103 cm s21, a typical excitation velocityvex of
104 cm s21, s50.17 erg cm22, and R51 cm, this means
that it is necessary to haveRn@531024R.

V. SUMMARY

We performed a calculation of the early stage of coal
cence of two drops. The calculation is performed for a liqu
whose interface moves at a velocity that is proportional
the local curvature. We are able to obtain an analytical so
tion valid when the radius of the neck is much less than
initial radius of the drops. The calculated shape of the n
9-5
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and rate of growth are in excellent agreement with the res
from a numerical simulation. The theoretical predictions
this paper can be tested through studies of the coalescen
liquid or solid helium drops in an appropriate temperatu
range.
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