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Analysis of the early stage of coalescence of helium drops
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We analyze the growth of the neck that forms between two liquid drops that have come into contact. The
analysis is for a fluid in which the velocity of each point on the surface is proportional to the local curvature
and directed normal to the interface. For this system, we show that the radius of the neck is proportiéhal to
where the time is measured from the moment at which coalescence commences. We are able to find a simple
expression for the shape of the interface in the vicinity of the neck.

DOI: 10.1103/PhysRevE.67.066309 PACS nuni)er68.03—g, 67.40.Hf, 68.35.Gy

[. INTRODUCTION One can also consider the coalescence of two drops of
superfluid helium. Depending on the temperature, superfluid
When two liquid drops come into contact, a neck formshelium is described by different hydrodynamic equations.
between them and grows rapidly. At later times, the fluidThere are at least three regimes to consféer].
may remain as one connected mass or may bredkufhe (1) At temperatures greater than 1 K, the motion of the
coalescence process is affected by the size of the drops, théiquid is well described by Landau’s two-fluid model. These
relative velocity before impact, and their material propertiesfluids, the so-called normal and superfluid components, have
such as viscosity, density, and surface tension. In this papeindependent velocitieg, andus, respectively. They occupy
we are primarily interested in the very early stage of thethe same region of space and are able to pass through each
coalescence process and, more specifically, in the variatioother. The superfluid has no viscosity and has a velocity field
of the radiusR, of the neck with the time since coalescence v satisfying cuds=0. The normal fluid has a viscosity;, .
of the drops began. For simplicity, we restrict attention toThe normal and superfluid components satisfy coupled
situations in which the impact velocity is zero and both dropshoundary conditions at the surface of the liquid. In this tem-
have the same material properties and initial radius perature range, a liquid drop is surrounded by a significant
Even then, there are a number of different cases that cammount of helium vapor.
be considered. If the drops are composed of classical fluids (2) At lower temperatures, the two-fluid model breaks
obeying the Navier-Stokes equation, it is necessary to solvdown[6,7]. The normal fluid component is composed of el-
this equation in the interior of the drop and with appropriateementary excitationgphonons and rotonsThe excitations
boundary conditions on the pressure and velocity fields at théhat make up the normal fluid have a well-defined collective
drop surface. When the viscosity is sufficiently large, thevelocity (normal fluid velocity only when the number den-
fluid will move in a way such that at each instant the viscoussity of these excitations is sufficiently high that they make
forces very nearly balance the surface tension fofSéskes’  frequent collisions with each other. When the temperature is
flow). In this regime, the density of the liquid does not affectlowered, the mean free path of the elementary excitations
the motion and so from dimensional analysis the neck radiugphonons and rotonsncreases and can become larger than

R, must vary as the dimensions of the drop. Under these conditions, the ef-
fect of the excitations is to exert a drag force on a moving
R,=Rf(ot/7R), (1) surface that is normal to the surface and proportional to the
surface velocity.
where o is the surface tension; is the viscosity, and is a (3) Finally, at sufficiently low temperatures the effect of

function whose form is to be determined. For a two-the excitations must become completely negligible.

dimensional system, i.e., two long, parallel, fluid cylinders, it  The model we consider is a special case of the regime 2 of

was shown by Hoppdr2] that the functiorf has the form superfluid helium. We suppose that the liquid moves suffi-
ciently slowly that there is always a balance between the

f(x)=Ax|In(x)|, (2)  surface tension force driving the motion and the drag force

exerted by the excitations. Thus, this is analogous to the

where A is a constant. More recently, Eggers, Lister, andStokes’s flow of a classical fluid. Under these conditions, the

Stone[3] have shown that this result should also hold inVelocity of the interface), will be in the direction outward

three dimensions. Experiments to test the predictions of Eq#iormal to the interface and given by

(1) and(2) are under way4]. Eggerset al.[3] point out that,

regardless of the value of the viscosity, there will be Stokes’ v,=K(oKk+P) &)

flow at very early times. At later times, if the liquid is not too ! ’

viscous, there will be a transition to a regime in which the

neck radius varies a¢/2. Menchaca-Rochat al. [5] studied where « is the total curvature, taken as positive when the

the growth of the neck between two mercury drops ancﬁurface of the IIqUId is concave outward. We will call the

found results that are consistent with'& law. constantK the mobility of the interfaceP is the pressure
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FIG. 1. Parameters describing the shape of the waist. FIG. 2. Coordinate system used in the calculation of the shape

. . . of a surface moving down a channel with parallel walls separated
inside the drop, taken to be independent of position. We tregjy, 5 gistancav. The shape of the interface is as given by Ed).
the liquid as incompressible so thBtvaries with time in

such a way that the volume of the drop remains constant. ~ 13
We note that, as well as being relevant to liquid helium, :(6K‘7Rt) @
the model may be applicable to the motion of the interface n a '

between liquid and solid heliuf8]. We discuss this in more
detail in Sec. IV. In the mathematical literature the flow de- Now consider the assumption that the coefficiante-

scribed by Eq(3) is called “mean curvature flow[9]. mains constant. This will hold true if the shape of the neck
remains constant as the radius of the neck grows. Thus, for
Il. RATE OF GROWTH OF THE NECK example, with reference to F|g 1, does the “depth" of the

_ necku vary with time in the same way as do&8 To answer
In the early stages of coalescence, the curvature in thghis question, we note that, i were held constant, the time
vicinity of the neck will be much larger than the curvature of t, for the neck to come to an equilibrium shape would be of
the remainder of the liquid surface. In addition, even thoughhe order ofw divided by the surface velocity. Since the

the neck is growing rapidly the change in volume of theg face velocity is of the order & o/w, we have
liquid in the vicinity of the neck is very small compared to

the total volume of the drops. Thus, the pressure remains RA
nearly constant at the values2R. Thus, we can make the t ~w2Ro~ —1 ®)
approximation that the only part of the surface that is moving " R&K o

is the part near the neck. It follows that, when the neck has a

radiusR,, the widthw of the neck will be(for definition, see  This is to be compared to the time scalg on which the

Fig. 1 width of the neck changes, which is given by
w=RZ/R. 4
n @ oW R, :Rﬁa ©
The surface tension force pulling outward on a section of the " dwdt 2d R,/dt 4RT<0.

circumference of the neck of leng#C will be 2¢6C. This
has to be balanced by the drag force acting on the neck. Thig can be seen that, is smaller thart,, by a factor ofR, /R.

drag force is proportional to the area of the nesC, and  Thus in the early stages of coalescence it appears from this
to the rate of growth of the neck, and inversely proportionalargument that the shape of the neck should be constant.

to K. Thus, We now determine the coefficieat Based on the above
arguments, it should be sufficient to do this for a surface
wsC dR, advancing down a channel of constant widtlwith the lig-
205C=a? el (5)  uid having zero contact angle with the walls. bebe the

distance along the channel amdcross, with the middle of
the channel az=0 (Fig. 2). Suppose that the interface is
where a is a dimensionless coefficient dependent on themoving along the channel with a constant velogitylet the
shape of the neck. Let us assume for the momentdhat  velocity of the interface in the direction normal to the surface

independent of the neck radius and hence also independepéy, and let the angle that the tangent to the interface makes
of the time since coalescence began. Then, combining Eqg thex axis bed. Then

(4) and(5), we have

- v|=v sin 6=Kok. (10
,dR, 2KoR 3
ndt a ©  We have sirg=(dzdx)/[1+(dZdx)?]*? and the curvature of
the surface isk=—(d?z/dx?)/[1+(dz/dx)?]*2 Hence,
and so from Eq. (3) (and settingP=0 for the moment
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d2z dx 1 v Hence in order for the total volume to remain constant, the

_——— = — (11 radius of each drop must shrink by an amount
dx? dz 1+(dzZdx)? Ko
R}
The right-hand side of this equation is a constant, and this AR=—5r3: (20
equation provides a differential equation that determines the

shape of the moving surface. To solve Efjl), setdz/dx  This is smaller than the widttv of the waist by a factor of

=f, so the equation becomes the order ofR¥R?. Thus it appears that at early time the
effect of the pressure can be neglected.
df v » Finally, we note that, since we are considering only what
—=——f(1+f?). (12 - icini
dx Ko happens in the vicinity of the neck, we could as an alterna-

tive setw=r?/R in Eq. (15), to obtain the formula
Then, by integration we get 2

r
L z=iﬁtan‘l({[eX[{Zw(r—Rn)R/rZ]—l]}l’z). (21)
f=u = , (13)

[exp2ux/Ko)—1]2 This formula has the feature that when the argument of the

) ) inverse tangent becomes large, i.e., whdres outside the
where we have chosen the constant of integration so thafeck region, the relation betweerandr becomes

|dz/dx| = atx=0. A second integration gives

2
r
Ko Z~* . (22)
7=+ tan [ exp2mx/w) ~ 112, (14) 2R
Thus the solution smoothly goes over to the equation for the
As x—, z—w/2. Therefore the velocity must equal undisturbed surface of the drops near to the point of contact.

mKa/w and so the shape of the surface is
ll. NUMERICAL SIMULATION

w
z:i;tanfl{[exp(wa/W)—1]1’2}. (15 We have performed a computer simulation to compare
with the analytical calculation given above. To avoid having
This is the interface shape shown in Fig. 2. to deal with a singular initial shape, we started with a neck of
From a Comparison Of the above ana'ysis W|th B]r we radiUSRno and tOOk the Starting pOSitiOI’l Of the Surface to be
obtain given by the equations
2 Ro+tbZ  |z<z, (23
a= (16) = (2]zIR-2)Y2 |z|>z,. (24)
By choosin
and so the final result for the radius of the neck is y g
R,=(37KoRt)M 1 AL (25)
n_( TRNO ) . ( 7) ZZC (ZZCR—ZE)]'/Z
The shape of the neck for the coalescing drops can then bzfnd
written in cylindrical polar coordinates,z) by using Eq.(4)
for w, i.e., by settingv=R;/R, to obtain Ruo=(2z.R—22)¥2—b 7, (26)

2

7= i%tan‘l({[eXQZW(r —Ry)R/RZ]-1}Y?). (18

it follows that Egs.(23) and (24) give a curve that is con-
tinuous atz. and which also has a continuous derivative at
this point. The starting radius of the waist was RO1n

This result is based on setting the pressure equal to zero {ferforming the simulation it was assumed that the drops re-
Eq. (3). As mentioned earlier, the pressure at any instantained axial symmetry as coalescence progressed and that
must adjust to a value that ensures that the volume of the(—z)=r(z). Thus, in both the simulation and the analytical
drop remains constant. A change in the pressure will result iga|culation, it is implicitly assumed that there are no insta-
a motion of the entire surface of the drop, not just in thepilities that break these symmetries. A set of 7800 points on
region near to the neck. The pressure must be negative $Re surface was used. The result for the radius of the neck as
that the main part of the drop contracts to compensate for thg function of time is shown in Fig. 3, along with the analyti-
increaseAV in the volume in the vicinity of the neck. From cal result Eq.(16). It can be seen that the agreement when

Eq. (4), we have to lowest order iR, /R the waist is small is excellent. In the range where the waist is
4 above about 0.08, the waist obtained from the numerical

_ 7R, simulation is smaller than that predicted by the analytical

AV= . (19 . ' . .

2R result. This is to be expected since the analytical result is
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FIG. 5. The shape of the neck expressed in terms of the reduced
FIG. 3. Radius of the waisR, divided~by initial radius of the variablesr/(KoRt) ¥ and z/ (K oR1)?? for times such thaK oRt
dropRas a function of time multiplied byKoR. The dashed curve  =0,00001, 0.000 03, and 0.0001.
shows the result from the computer simulation and the solid curve
is the analytical resultEq. (16)]. increases. Finally, in Fig. 6 we show the shape of the drops at
much later times.
valid only when the waist radius is much less tHRrEqua-
tion (17), which predicts a waist radius increasing for all V. POSSIBLE APPLICATION TO THE LIQUID-SOLID
times, must give too large a value Bf, for larget. HELIUM INTERFACE
In Fig. 4 we show a comparison of the shape of the neck
region obtained frpm the numerical simulation and frF’m theber of unique properties and has been studied in great detail.
analytical calcijlatlonEEqs.(18) and(21)]. The comparison Helium is the only substance that can remain liquid down to
is made wherK oRt=0.00001 at which time the waist ra- absolute zero temperature. Fibte at zero temperature, it is
dius isR,=0.045R. The agreement is excellent. Based onnecessary to apply a pressure of 25 bars in order to form the
the analytic solution, the radius should increase™&sand  solid. By introducing an appropriate amount of helium into a
the width of the neck should vary 4&° Thus the shape of cell of fixed volume, it is possible to have liquid and solid
the neck expressed in terms of the reduced variable§  coexisting. Under normal gravitational conditions, the solid
andz/t*® should be independent of time for small times. Awill occupy the bottom of the experimental cell because of
plot of this type is shown in Fig. 5. It can be seen from thisits higher density. However, it should be possible to levitate
figure that the shape of the neck in these reduced variables d;ﬁ’ops of the solid phase optically or magnetically as has been
indeed almost independent of time. Note that for the largesgione for the liquid[10,11], and to study the coalescence of
time for whichK oRt=0.0001, the radiuR, of the neck is these drops. Of course, in considering the coalescence of
~0.1R and is increasing with time slightly less rapidly than solid drops, it is necessary to allow for the variation of the
ast¥® Thus, when the shape of the neck is plotted in thesurface energy over the surface of the drop.
reduced variables, the neck radius shrinks slightly as time As discussed by Castaing and Nozief&g], the growth
rate of solid from the liquid is determined by the difference

The interface between liquid and solid helium has a num-

e D A in the chemical potential per unit mass of the two phases
SIMULATION ... and the temperature differenael. When these differences
0.001 \ ———— are sufficiently small,
- Eq. 18 Eq. 21 | Au
ANALYTICAL T Talthle, @7
z/R 0
i KoRt=001 0.1 1
-0.001-
1 1 1 1 1 1 1
0.045 0.046 0.047 0.048  0.049
riR
FIG. 4. Shape of the region around the waist at a time such that 2R
KoRt=0.00001. The dashed curve shows the result from the com- ~
puter simulation and the analytical results from E4®) and (21) FIG. 6. The shape of the drops at times such KaRt has the
are shown by the dotted and solid curves, respectively. values 0.01, 0.1, and 1. The initial diameter of each dropRs 2
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Thus, in this range of wave numbers the interface moves at a
Tz =bJ+cJe, (28)  velocity which is proportional to the local curvature, and the
theory that we have developed should be applicable. Hence,
whereJ andJg are the currents of mass and entropy, respecfrom this analysis we conclude that during the coalescence
tively, flowing across the interface, arg b, andc are On-  Process the features of the interface that can be described
sager coefficients. Note that the same coefficieappears in  With k<ke will be adequately described by our theory,
both equations. We ignore the thermal effects for the momenihereas very sharp features wkk kc will not. For "He at

so that we can write the velocity of the interface as 1.35 K, for exampleK™*~10° cms * [16], and we obtain
ke~3Xx 10" cm L. Thus, our theory should give a good de-
v=KApu. (29 scription apart from details on a length scale of a few ang-

) ) . ) stroms, which are unlikely to be observable in any case. As
In the literature on solid hellUmK is referred to as the the tempera‘[ure is |owere& increaseskc decreaseS, and
growth coefficient{13], and is related to the coefficielt  eventuallyk_ * becomes comparable to the radius of the drop

previously introduced by and the theory is completely inapplicable.
We can now consider the neglect of thermal effects, i.e.,
5 K (30) the replacement of Eq&27) and(28) by Eq.(29). This relies
Ps ' on the assumption that either the solid or the ligdd pref-

_ _ _ erably both are good heat conductors so that the latent heat

For a classical substance, the growth rate is determined bat is liberated when the solid is formed is efficiently carried
the rate at which atoms in the liquid can move to find correclaway. We have not investigated this in detail. However, we
positions on the solid surface. Thus, increases with in-  note that for®He at around 0.32 K, the latent heat becomes
creasing temperature. For helium, on the other hand, one cafero [6] thus making heat conduction unnecessary. At this
consider that freezing amounts to the smooth conversion q@mperature{ﬂ] K 1~500 cms?! and sok, is again very
one quantum statghe liquid into another(the solid, and o small, making the theory applicable. Of course, sifide is
at zero temperature there is no dissipation associated Withot superfluid at this temperature, it may be necessary to
this process. Fof #0, a finite growth coefficient arises be- consider the effects of the viscosity of the liquid on the coa-
cause as the interface moves thermal excitations comingscence process.
from either the liquid or solid side are reflected and exert a The damping of the interface arises because elementary
drag force on the interface. In the solid these excitations argxcitations(phonons and rotonsounce off the surface and
phonons, and in the liquid they are phonons and rotongamp its motion. For this process, the drag force on the
[14,15. _ - _ _interface is proportional to the surface velocity only when

Now we consider the conditions under which the motionthe surface velocity is small compared to the propagation
of the interface will be sufficiently slow that at each momentye|ocity v, of the excitations. Since the radius of the neck

the surface tension forces nearly balance the drag force opyries ast’3 it follows that within the model the surface

the interface. It is convenient to do this by analyzing theye|ocity varies ag~23. Thus, the results we have derived

small amplitude motion of a planar interface. From the workshould be used only for times such that this velocity is much
of Andreev and Parshifi4], the dispersion relation for these |ess than the excitation velocity, which means for times such
so-called “melting-freezing waves” is obtained from the so- {5t

lution of the equation

i wkpgp k3op t> (37RoR)™2 (34)
w2+ s =0, 31 Z T Bu)
K(ps—p)® (ps—p1)? ) (3ve)
wherew is the frequencyk is the wave numberr is now the or
liquid-solid surface energy, angd, andp, are the densities of R Ko |12
the solid and liquid, respectively. Let —”>( (35)
R VexPsR

2
PsPi

s For K"1=10° cms?, a typical excitation velocit of

10* cms !, ¢=0.17 ergcm?, and R=1cm, this means
that it is necessary to ha,>5x 10 “R.

ke=

Then fork>k; Eq. (28) has a pair of solutions of the form
w=*wrtiw , Wherew, is negative. These solutions cor-

respond to damped propagating waves traveling along the V. SUMMARY
interface. Fork<k., the solutions forw are purely imagi- We performed a calculation of the early stage of coales-
nary, and fork<k a disturbance of the interface with wave cence of two drops. The calculation is performed for a liquid
numberk relaxes with a frequency whose interface moves at a velocity that is proportional to
iK2K o the Iocql curvature. We_ are able to obtz_:lin an analytical solu-
w=— =—ik%Ko. (33  tion valid when the radius of the neck is much less than the
P initial radius of the drops. The calculated shape of the neck
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